On the complexity of algebraic numbers I. Expansions in integer bases

نویسندگان

  • Boris Adamczewski
  • Yann Bugeaud
  • YANN BUGEAUD
چکیده

Let b ≥ 2 be an integer. We prove that the b-ary expansion of every irrational algebraic number cannot have low complexity. Furthermore, we establish that irrational morphic numbers are transcendental, for a wide class of morphisms. In particular, irrational automatic numbers are transcendental. Our main tool is a new, combinatorial transcendence criterion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the independence of expansions of algebraic numbers in an integer base

Let b ≥ 2 be an integer. According to a conjecture of Émile Borel, the b-adic expansion of any irrational algebraic number behaves in some respect ‘like a random sequence’. We give a contribution to the following related problem: let α and α be irrational algebraic numbers, prove that their b-adic expansions either have the same tail, or behave in some respect ‘like independent random sequences’.

متن کامل

On the computational complexity of algebraic numbers: the Hartmanis-Stearns problem revisited

— We consider the complexity of integer base expansions of algebraic irrational numbers from a computational point of view. We show that the Hartmanis–Stearns problem can be solved in a satisfactory way for the class of multistack machines. In this direction, our main result is that the base-b expansion of an algebraic irrational real number cannot be generated by a deterministic pushdown autom...

متن کامل

On the Number of Unique Expansions in Non-integer Bases

Let q > 1 be a real number and let m = m(q) be the largest integer smaller than q. It is well known that each number x ∈ Jq := [0, P ∞ i=1 mq ] can be written as x = P ∞ i=1 ciq −i with integer coefficients 0 ≤ ci < q. If q is a non-integer, then almost every x ∈ Jq has continuum many expansions of this form. In this note we consider some properties of the set Uq consisting of numbers x ∈ Jq ha...

متن کامل

On periodic sequences for algebraic numbers

For each positive integer n ≥ 2, a new approach to expressing real numbers as sequences of nonnegative integers is given. The n = 2 case is equivalent to the standard continued fraction algorithm. For n = 3, it reduces to a new iteration of the triangle. Cubic irrationals that are roots of x3 +kx2 +x−1 are shown to be precisely those numbers with purely periodic expansions of period length one....

متن کامل

6 On alpha - adic expansions in Pisot bases 1

We study α-adic expansions of numbers in an extension field, that is to say, left infinite representations of numbers in the positional numeration system with the base α, where α is an algebraic conjugate of a Pisot number β. Based on a result of Bertrand and Schmidt, we prove that a number belongs to Q(α) if and only if it has an eventually periodic α-expansion. Then we consider α-adic expansi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005